Engineered cementitious composites can improve infrastructure sustainability

Engineered cementitious composites beams exhibited significantly higher strength, stiffness, and energy absorption capacity, along with superior performance in terms of the restriction of damage caused by reinforcement corrosion, says a new paper published in the ACI Structural Journal.

These performances of reinforced engineered cementitious composites are expected to contribute substantially to improving infrastructure sustainability by reducing the amount of repair and maintenance during the service life of the infrastructure.

Reinforced concrete represents a very successful synergistic combination of materials not only mechanically but also chemically since concrete is a perfect material providing ideal environment with high alkalinity for the corrosion protection of steel reinforcement embedded in it although this is only valid when the concrete is designed properly to satisfy the covering purpose.

The main problem regarding with the deterioration of reinforced concrete as a result of corrosion is not the reduced mechanical strength of reinforcement but rather the products of corrosion creating stresses within concrete that cannot be supported by the limited plastic deformation capability of concrete material itself leading to cracking and in extreme cases to structural breakdown followed by relatively lower service life than that of initially designed.

“This therefore brings about the idea of creating concrete material which will be resistant enough to endure considerable plastic deformations, have control over cracking behavior and be durable against several major durability issues including rebar corrosion” says Mustafa ahmaran, professor of civil engineering and director of advanced cementitious materials research laboratory, Gazi University, Ankara, Turkey.

Engineered cementitious composites, which are designed based on the micro-mechanical design constraints, were first proposed and invented by Professor Victor C Li from University of Michigan, Ann Arbor. What separates engineered cementitious composites from traditional concrete material mostly being used in many civil engineering applications in the field is its strain hardening response under excessive tensile and shear loadings which is similar to many ductile metals.

The strain hardening behavior of engineered cementitious composites is a direct outcome of the formation of multiple microcracks having widths generally less than 100 micrometer threshold.

“Although it seems unrealistic to produce a concrete material that is completely crack-free, with the control over cracking behavior many durability problems of reinforced concrete structures can be confronted” says Grkan Yldrm, research assistant and PhD candidate in Civil Engineering at Gazi University.

On the material basis, engineered cementitious composites already proved itself worthy in terms of freeze-thaw resistance, sulfate resistance, alkali-silicate resistivity, reinforcement corrosion and so on.

However, compared to studies using small scale specimens, there are relatively less number of research papers aiming at the engineered cementitious composites’ durability performance evaluation at large scale.

Along these lines, Dr ahmaran and his lab team carried out a series of experiment to assess the effect of corrosion level on shear behavior of reinforced engineered cementitious composites and compared with conventional concrete.

According to the experimental findings compared to conventional concrete with similar strength grades, engineered cementitious composites beams exhibited significantly higher strength, stiffness, and energy absorption capacity, along with superior performance in terms of the restriction of damage caused by reinforcement corrosion. These performances of reinforced engineered cementitious composites are expected to contribute substantially to improving infrastructure sustainability by reducing the amount of repair and maintenance during the service life of the infrastructure.

The research can be found in a paper titled Effect of Corrosion on Shear Behavior of Reinforced Engineered Cementitious Composite Beams, published in the ACI Structural Journal.

Source

(Visited 111 times, 1 visits today)

Get involved

Register

As a member of this site you will be able to receive aggregates news relating only to those categories that are most relevant to you, submit job listings for FREE, post questions in the Q&A, and more.

Register Now

Feature your company

The Feature Your Company listing is your custom-made (by us) profile page that allows you to add any of the following content: text, videos, links, images. The page will also be listed on the Featured Company landing page. Over 560 unique aggregates users visit the site per day! Complete the enquiry form now to contact us.

Contact us

Jobs

Are you looking for an aggregate related job? Click here to see our jobs listing supplied by industry experts United Employment.

See Jobs

Advertise

Reach thousands of budget holders and decision makers by promoting your company on the longest established aggregate website in the US & Canada. Or advertise in our emails which are sent to opted-in subscribers according to their chosen categories. All advertising will display correctly on tablets and mobiles as this site is responsive.